NVIDIA
This article covers the proprietary NVIDIA graphics card driver. For the open-source driver, see Nouveau. If you have a laptop with hybrid Intel/NVIDIA graphics, see NVIDIA Optimus instead.
Installation
These instructions are for those using the stock linux or linux-lts packages. For custom kernel setup, skip to the next subsection.
1. If you do not know what graphics card you have, find out by issuing:
$ lspci -k | grep -A 2 -E "(VGA|3D)"
2. Determine the necessary driver version for your card by:
- Visiting NVIDIA's driver download site and using the dropdown lists.
- Finding the code name (e.g. NV50, NVC0, etc.) on nouveau wiki's code names page or nouveau's GitLab, then looking up the name in NVIDIA's legacy card list: if your card is not there you can use the latest driver.
3. Install the appropriate driver for your card:
-
- For the Maxwell (NV110/GMXXX) series and newer, install the nvidia package (for use with the linux kernel) or nvidia-lts (for use with the linux-lts kernel) package.
- If these packages do not work, nvidia-betaAUR may have a newer driver version that offers support.
- For the Turing (NV160/TUXXX) series or newer the nvidia-open package may be installed for open source kernel modules on the linux kernel (On other kernels nvidia-open-dkms must be used).
- This is currently alpha quality on desktop cards, so there may be issues, and #Early_loading may be required to not compete with the nouveau module.
- For the Kepler (NVE0/GKXXX) series, install the nvidia-470xx-dkmsAUR package.
- For the Fermi (NVC0/GF1XX) series, install the nvidia-390xx-dkmsAUR package.
- Note: When installing dkms, read Dynamic Kernel Module Support#Installation
- For even older cards, have a look at #Unsupported drivers.
- For the Maxwell (NV110/GMXXX) series and newer, install the nvidia package (for use with the linux kernel) or nvidia-lts (for use with the linux-lts kernel) package.
4. For 32-bit application support, also install the corresponding lib32 package from the multilib repository (e.g. lib32-nvidia-utils).
5. Reboot. The nvidia package contains a file which blacklists the nouveau
module, so rebooting is necessary.
Once the driver has been installed, continue to #Xorg configuration or #Wayland.
Unsupported drivers
If you have an older card, NVIDIA no longer actively supports drivers for your card. This means that these drivers do not officially support the current Xorg version. It thus might be easier to use the nouveau driver, which supports the old cards with the current Xorg.
However, NVIDIA's legacy drivers are still available and might provide better 3D performance/stability.
- For the Tesla (NV50/G80-90-GT2XX) series, install the nvidia-340xx-dkmsAUR package.
- For the Curie (NV40/G70) series and older, drivers are no longer packaged for Arch Linux.
Custom kernel
If using a custom kernel, compilation of the NVIDIA kernel modules can be automated with DKMS. Install the nvidia-dkms package (or a specific branch).
Ensure your kernel has CONFIG_DRM_SIMPLEDRM=y
, and if using CONFIG_DEBUG_INFO_BTF
then this is needed in the PKGBUILD (since kernel 5.16):
install -Dt "$builddir/tools/bpf/resolve_btfids" tools/bpf/resolve_btfids/resolve_btfids
The NVIDIA module will be rebuilt after every NVIDIA or kernel update thanks to the DKMS pacman hook.
DRM kernel mode setting
To enable DRM (Direct Rendering Manager) kernel mode setting, add the nvidia-drm.modeset=1
kernel parameter.
- The NVIDIA driver does not provide an
fbdev
driver for the high-resolution console for the kernel compiled-invesafb
module. However, the kernel compiled-inefifb
module supports a high-resolution console on EFI systems. This method requires GRUB or rEFInd and is described in NVIDIA/Tips and tricks#Fixing terminal resolution.[1][2][3]. - Nvidia drivers prior to version 470 (e.g. nvidia-390xx-dkmsAUR) do not support hardware accelerated XWayland, causing non-Wayland-native applications to suffer from poor performance in Wayland sessions.
Early loading
For basic functionality, just adding the kernel parameter should suffice. If you want to ensure it is loaded at the earliest possible occasion, or are noticing startup issues (such as the nvidia
kernel module being loaded after the display manager) you can add nvidia
, nvidia_modeset
, nvidia_uvm
and nvidia_drm
to the initramfs.
mkinitcpio
If you use mkinitcpio initramfs, follow mkinitcpio#MODULES to add modules.
If added to the initramfs, do not forget to run mkinitcpio every time there is a nvidia driver update. See #pacman hook to automate these steps.
Booster
If you use Booster, follow Booster#Early module loading.
pacman hook
To avoid the possibility of forgetting to update initramfs after an NVIDIA driver upgrade, you may want to use a pacman hook:
/etc/pacman.d/hooks/nvidia.hook
[Trigger] Operation=Install Operation=Upgrade Operation=Remove Type=Package Target=nvidia Target=linux # Change the linux part above and in the Exec line if a different kernel is used [Action] Description=Update Nvidia module in initcpio Depends=mkinitcpio When=PostTransaction NeedsTargets Exec=/bin/sh -c 'while read -r trg; do case $trg in linux) exit 0; esac; done; /usr/bin/mkinitcpio -P'
Make sure the Target
package set in this hook is the one you have installed in steps above (e.g. nvidia
, nvidia-dkms
, nvidia-lts
or nvidia-ck-something
).
Exec
line above is in order to avoid running mkinitcpio multiple times if both nvidia
and linux
get updated. In case this does not bother you, the Target=linux
and NeedsTargets
lines may be dropped, and the Exec
line may be reduced to simply Exec=/usr/bin/mkinitcpio -P
.Hardware accelerated video decoding
Accelerated video decoding with VDPAU is supported on GeForce 8 series cards and newer. Accelerated video decoding with NVDEC is supported on Fermi (~400 series) cards and newer. See Hardware video acceleration for details.
Hardware accelerated video encoding with NVENC
NVENC requires the nvidia_uvm
module and the creation of related device nodes under /dev
.
The latest driver package provides a udev rule which creates device nodes automatically, so no further action is required.
If you are using an old driver (e.g. nvidia-340xx-dkmsAUR), you need to create device nodes. Invoking the nvidia-modprobe
utility automatically creates them. You can create /etc/udev/rules.d/70-nvidia.rules
to run it automatically:
/etc/udev/rules.d/70-nvidia.rules
ACTION=="add", DEVPATH=="/bus/pci/drivers/nvidia", RUN+="/usr/bin/nvidia-modprobe -c0 -u"
Xorg configuration
The proprietary NVIDIA graphics card driver does not need any Xorg server configuration file. You can start X to see if the Xorg server will function correctly without a configuration file. However, it may be required to create a configuration file (prefer /etc/X11/xorg.conf.d/20-nvidia.conf
over /etc/X11/xorg.conf
) in order to adjust various settings. This configuration can be generated by the NVIDIA Xorg configuration tool, or it can be created manually. If created manually, it can be a minimal configuration (in the sense that it will only pass the basic options to the Xorg server), or it can include a number of settings that can bypass Xorg's auto-discovered or pre-configured options.
Automatic configuration
The NVIDIA package includes an automatic configuration tool to create an Xorg server configuration file (xorg.conf
) and can be run by:
# nvidia-xconfig
This command will auto-detect and create (or edit, if already present) the /etc/X11/xorg.conf
configuration according to present hardware.
If there are instances of DRI, ensure they are commented out:
# Load "dri"
Double check your /etc/X11/xorg.conf
to make sure your default depth, horizontal sync, vertical refresh, and resolutions are acceptable.
nvidia-settings
The nvidia-settings tool lets you configure many options using either CLI or GUI. Running nvidia-settings
without any options launches the GUI, for CLI options see nvidia-settings(1).
You can run the CLI/GUI as a non-root user and save the settings to ~/.nvidia-settings-rc
by using the option Save Current Configuration under nvidia-settings Configuration tab.
To load the ~/.nvidia-settings-rc
for the current user:
$ nvidia-settings --load-config-only
See Autostarting to start this command on every boot.
nvidia-settings
changes. Adjusting or deleting the generated ~/.nvidia-settings-rc
and/or Xorg file(s) should recover normal startup.nvidia-settings
. You can adjust the Cinnamon startup behavior to prevent that.Manual configuration
Several tweaks (which cannot be enabled automatically or with nvidia-settings) can be performed by editing your configuration file. The Xorg server will need to be restarted before any changes are applied.
See NVIDIA Accelerated Linux Graphics Driver README and Installation Guide for additional details and options.
Minimal configuration
A basic configuration block in 20-nvidia.conf
(or deprecated in xorg.conf
) would look like this:
/etc/X11/xorg.conf.d/20-nvidia.conf
Section "Device" Identifier "Nvidia Card" Driver "nvidia" VendorName "NVIDIA Corporation" BoardName "GeForce GTX 1050 Ti" EndSection
Disabling the logo on startup
Add the "NoLogo"
option under section Device
:
Option "NoLogo" "1"
Overriding monitor detection
The "ConnectedMonitor"
option under section Device
allows to override monitor detection when X server starts, which may save a significant amount of time at start up. The available options are: "CRT"
for analog connections, "DFP"
for digital monitors and "TV"
for televisions.
The following statement forces the NVIDIA driver to bypass startup checks and recognize the monitor as DFP:
Option "ConnectedMonitor" "DFP"
Enabling brightness control
Add to kernel paremeters:
nvidia.NVreg_RegistryDwords=EnableBrightnessControl=1
Alternatively, add the following under section Device
:
Option "RegistryDwords" "EnableBrightnessControl=1"
If brightness control still does not work with this option, try installing nvidia-bl-dkmsAUR.
/sys/class/backlight/nvidia_backlight/
interface to backlight brightness control, but your system may continue to issue backlight control changes on /sys/class/backlight/acpi_video0/
. One solution in this case is to watch for changes on, e.g. acpi_video0/brightness
with inotifywait and to translate and write to nvidia_backlight/brightness
accordingly. See Backlight#sysfs modified but no brightness change.Enabling SLI
Taken from the NVIDIA driver's README Appendix B: This option controls the configuration of SLI rendering in supported configurations. A "supported configuration" is a computer equipped with an SLI-Certified Motherboard and 2 or 3 SLI-Certified GeForce GPUs.
Find the first GPU's PCI Bus ID using lspci
:
# lspci | grep "VGA|3D controller"
00:02.0 VGA compatible controller: Intel Corporation Xeon E3-1200 v2/3rd Gen Core processor Graphics Controller (rev 09) 03:00.0 VGA compatible controller: NVIDIA Corporation GK107 [GeForce GTX 650] (rev a1) 04:00.0 VGA compatible controller: NVIDIA Corporation GK107 [GeForce GTX 650] (rev a1) 08:00.0 3D controller: NVIDIA Corporation GM108GLM [Quadro K620M / Quadro M500M] (rev a2)
Add the BusID (3 in the previous example) under section Device
:
BusID "PCI:3:0:0"
"PCI:<BusID>:0:0"
Add the desired SLI rendering mode value under section Screen
:
Option "SLI" "AA"
The following table presents the available rendering modes.
Value | Behavior |
---|---|
0, no, off, false, Single | Use only a single GPU when rendering. |
1, yes, on, true, Auto | Enable SLI and allow the driver to automatically select the appropriate rendering mode. |
AFR | Enable SLI and use the alternate frame rendering mode. |
SFR | Enable SLI and use the split frame rendering mode. |
AA | Enable SLI and use SLI antialiasing. Use this in conjunction with full scene antialiasing to improve visual quality. |
Alternatively, you can use the nvidia-xconfig utility to insert these changes into xorg.conf
with a single command:
# nvidia-xconfig --busid=PCI:3:0:0 --sli=AA
To verify that SLI mode is enabled from a shell:
$ nvidia-settings -q all | grep SLIMode
Attribute 'SLIMode' (arch:0.0): AA 'SLIMode' is a string attribute. 'SLIMode' is a read-only attribute. 'SLIMode' can use the following target types: X Screen.
If this configuration does not work, you may need to use the PCI Bus ID provided by nvidia-settings
,
$ nvidia-settings -q all | grep -i pcibus
Attribute 'PCIBus' (host:0[gpu:0]): 101. 'PCIBus' is an integer attribute. 'PCIBus' is a read-only attribute. 'PCIBus' can use the following target types: GPU, SDI Input Device. Attribute 'PCIBus' (host:0[gpu:1]): 23. 'PCIBus' is an integer attribute. 'PCIBus' is a read-only attribute. 'PCIBus' can use the following target types: GPU, SDI Input Device.
and comment out the PrimaryGPU option in your xorg.d configuration,
/usr/share/X11/xorg.conf.d/10-nvidia-drm-outputclass.conf
... Section "OutputClass" ... # Option "PrimaryGPU" "yes" ...
Using this configuration may also solve any graphical boot issues.
Multiple monitors
See Multihead for more general information.
Using nvidia-settings
The nvidia-settings tool can configure multiple monitors.
For CLI configuration, first get the CurrentMetaMode
by running:
$ nvidia-settings -q CurrentMetaMode
Attribute 'CurrentMetaMode' (hostnmae:0.0): id=50, switchable=no, source=nv-controlĀ :: DPY-1: 2880x1620 @2880x1620 +0+0 {ViewPortIn=2880x1620, ViewPortOut=2880x1620+0+0}
Save everything after the ::
to the end of the attribute (in this case: DPY-1: 2880x1620 @2880x1620 +0+0 {ViewPortIn=2880x1620, ViewPortOut=2880x1620+0+0}
) and use to reconfigure your displays with nvidia-settings --assign "CurrentMetaMode=your_meta_mode"
.
ConnectedMonitor
If the driver does not properly detect a second monitor, you can force it to do so with ConnectedMonitor.
/etc/X11/xorg.conf
Section "Monitor" Identifier "Monitor1" VendorName "Panasonic" ModelName "Panasonic MICRON 2100Ex" HorizSync 30.0 - 121.0 # this monitor has incorrect EDID, hence Option "UseEDIDFreqs" "false" VertRefresh 50.0 - 160.0 Option "DPMS" EndSection Section "Monitor" Identifier "Monitor2" VendorName "Gateway" ModelName "GatewayVX1120" HorizSync 30.0 - 121.0 VertRefresh 50.0 - 160.0 Option "DPMS" EndSection Section "Device" Identifier "Device1" Driver "nvidia" Option "NoLogo" Option "UseEDIDFreqs" "false" Option "ConnectedMonitor" "CRT,CRT" VendorName "NVIDIA Corporation" BoardName "GeForce 6200 LE" BusID "PCI:3:0:0" Screen 0 EndSection Section "Device" Identifier "Device2" Driver "nvidia" Option "NoLogo" Option "UseEDIDFreqs" "false" Option "ConnectedMonitor" "CRT,CRT" VendorName "NVIDIA Corporation" BoardName "GeForce 6200 LE" BusID "PCI:3:0:0" Screen 1 EndSection
The duplicated device with Screen
is how you get X to use two monitors on one card without TwinView
. Note that nvidia-settings
will strip out any ConnectedMonitor
options you have added.
TwinView
You want only one big screen instead of two. Set the TwinView
argument to 1
. This option should be used if you desire compositing. TwinView only works on a per card basis, when all participating monitors are connected to the same card.
Option "TwinView" "1"
Example configuration:
/etc/X11/xorg.conf.d/10-monitor.conf
Section "ServerLayout" Identifier "TwinLayout" Screen 0 "metaScreen" 0 0 EndSection Section "Monitor" Identifier "Monitor0" Option "Enable" "true" EndSection Section "Monitor" Identifier "Monitor1" Option "Enable" "true" EndSection Section "Device" Identifier "Card0" Driver "nvidia" VendorName "NVIDIA Corporation" #refer to the link below for more information on each of the following options. Option "HorizSync" "DFP-0: 28-33; DFP-1: 28-33" Option "VertRefresh" "DFP-0: 43-73; DFP-1: 43-73" Option "MetaModes" "1920x1080, 1920x1080" Option "ConnectedMonitor" "DFP-0, DFP-1" Option "MetaModeOrientation" "DFP-1 LeftOf DFP-0" EndSection Section "Screen" Identifier "metaScreen" Device "Card0" Monitor "Monitor0" DefaultDepth 24 Option "TwinView" "True" SubSection "Display" Modes "1920x1080" EndSubSection EndSection
If you have multiple cards that are SLI capable, it is possible to run more than one monitor attached to separate cards (for example: two cards in SLI with one monitor attached to each). The "MetaModes" option in conjunction with SLI Mosaic mode enables this. Below is a configuration which works for the aforementioned example and runs GNOME flawlessly.
/etc/X11/xorg.conf.d/10-monitor.conf
Section "Device" Identifier "Card A" Driver "nvidia" BusID "PCI:1:00:0" EndSection Section "Device" Identifier "Card B" Driver "nvidia" BusID "PCI:2:00:0" EndSection Section "Monitor" Identifier "Right Monitor" EndSection Section "Monitor" Identifier "Left Monitor" EndSection Section "Screen" Identifier "Right Screen" Device "Card A" Monitor "Right Monitor" DefaultDepth 24 Option "SLI" "Mosaic" Option "Stereo" "0" Option "BaseMosaic" "True" Option "MetaModes" "GPU-0.DFP-0: 1920x1200+4480+0, GPU-1.DFP-0:1920x1200+0+0" SubSection "Display" Depth 24 EndSubSection EndSection Section "Screen" Identifier "Left Screen" Device "Card B" Monitor "Left Monitor" DefaultDepth 24 Option "SLI" "Mosaic" Option "Stereo" "0" Option "BaseMosaic" "True" Option "MetaModes" "GPU-0.DFP-0: 1920x1200+4480+0, GPU-1.DFP-0:1920x1200+0+0" SubSection "Display" Depth 24 EndSubSection EndSection Section "ServerLayout" Identifier "Default" Screen 0 "Right Screen" 0 0 Option "Xinerama" "0" EndSection
Vertical sync using TwinView
If you are using TwinView and vertical sync (the "Sync to VBlank" option in nvidia-settings), you will notice that only one screen is being properly synced, unless you have two identical monitors. Although nvidia-settings does offer an option to change which screen is being synced (the "Sync to this display device" option), this does not always work. A solution is to add the following environment variables at startup, for example append in /etc/profile
:
export __GL_SYNC_TO_VBLANK=1 export __GL_SYNC_DISPLAY_DEVICE=DFP-0 export VDPAU_NVIDIA_SYNC_DISPLAY_DEVICE=DFP-0
You can change DFP-0
with your preferred screen (DFP-0
is the DVI port and CRT-0
is the VGA port). You can find the identifier for your display from nvidia-settings in the "X Server XVideoSettings" section.
Gaming using TwinView
In case you want to play fullscreen games when using TwinView, you will notice that games recognize the two screens as being one big screen. While this is technically correct (the virtual X screen really is the size of your screens combined), you probably do not want to play on both screens at the same time.
To correct this behavior for SDL, try:
export SDL_VIDEO_FULLSCREEN_HEAD=1
For OpenGL, add the appropriate Metamodes to your xorg.conf in section Device
and restart X:
Option "Metamodes" "1680x1050,1680x1050; 1280x1024,1280x1024; 1680x1050,NULL; 1280x1024,NULL;"
Another method that may either work alone or in conjunction with those mentioned above is starting games in a separate X server.
Mosaic mode
Mosaic mode is the only way to use more than 2 monitors across multiple graphics cards with compositing. Your window manager may or may not recognize the distinction between each monitor. Mosaic mode requires a valid SLI configuration. Even if using Base mode without SLI, the GPUs must still be SLI capable/compatible.
Base Mosaic
Base Mosaic mode works on any set of Geforce 8000 series or higher GPUs. It cannot be enabled from within the nvidia-setting GUI. You must either use the nvidia-xconfig command line program or edit xorg.conf
by hand. Metamodes must be specified. The following is an example for four DFPs in a 2x2 configuration, each running at 1920x1024, with two DFPs connected to two cards:
$ nvidia-xconfig --base-mosaic --metamodes="GPU-0.DFP-0: 1920x1024+0+0, GPU-0.DFP-1: 1920x1024+1920+0, GPU-1.DFP-0: 1920x1024+0+1024, GPU-1.DFP-1: 1920x1024+1920+1024"
SLI Mosaic
If you have an SLI configuration and each GPU is a Quadro FX 5800, Quadro Fermi or newer then you can use SLI Mosaic mode. It can be enabled from within the nvidia-settings GUI or from the command line with:
$ nvidia-xconfig --sli=Mosaic --metamodes="GPU-0.DFP-0: 1920x1024+0+0, GPU-0.DFP-1: 1920x1024+1920+0, GPU-1.DFP-0: 1920x1024+0+1024, GPU-1.DFP-1: 1920x1024+1920+1024"
Wayland
See Wayland#Requirements for more information.
For further configuration options, take a look at the wiki pages or documentation of the respective compositor.
Regarding XWayland take a look at Wayland#XWayland.