systemd/Timers
Timers are systemd unit files whose name ends in .timer that control .service files or events. Timers can be used as an alternative to cron (read #As a cron replacement). Timers have built-in support for calendar time events, monotonic time events, and can be run asynchronously.
Timer units
Timers are systemd unit files with a suffix of .timer. Timers are like other unit configuration files and are loaded from the same paths but include a [Timer]
section which defines when and how the timer activates. Timers are defined as one of two types:
-
Realtime timers (a.k.a. wallclock timers) activate on a calendar event, the same way that cronjobs do. The option
OnCalendar=
is used to define them. -
Monotonic timers activate after a time span relative to a varying starting point. They stop if the computer is temporarily suspended or shut down. There are number of different monotonic timers but all have the form:
OnTypeSec=
. Common monotonic timers includeOnBootSec
andOnUnitActiveSec
.
For a full explanation of timer options, see the systemd.timer(5). The argument syntax for calendar events and time spans is defined in systemd.time(7).
timers.target
which sets up all timers that should be active after boot (see systemd.special(7) for details). To use it, add WantedBy=timers.target
to the [Install]
section of your timer and enable the timer unit.Service units
For each .timer file, a matching .service file exists (e.g. foo.timer
and foo.service
). The .timer file activates and controls the .service file. The .service does not require an [Install]
section as it is the timer units that are enabled. If necessary, it is possible to control a differently-named unit using the Unit=
option in the timer's [Timer]
section.
Management
To use a timer unit enable and start it like any other unit (remember to add the .timer suffix). To view all started timers, run:
$ systemctl list-timers
NEXT LEFT LAST PASSED UNIT ACTIVATES Thu 2014-07-10 19:37:03 CEST 11h left Wed 2014-07-09 19:37:03 CEST 12h ago systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service Fri 2014-07-11 00:00:00 CEST 15h left Thu 2014-07-10 00:00:13 CEST 8h ago logrotate.timer logrotate.service
- To list all timers (including inactive), use
systemctl list-timers --all
. - The status of a service started by a timer will likely be inactive unless it is currently being triggered.
- If a timer gets out of sync, it may help to delete its
stamp-*
file in/var/lib/systemd/timers
(or~/.local/share/systemd/
in case of user timers). These are zero length files which mark the last time each timer was run. If deleted, they will be reconstructed on the next start of their timer.
Examples
A service unit file can be scheduled with a timer out-of-the-box. The following examples schedule foo.service
to be run with a corresponding timer called foo.timer
.
Monotonic timer
A timer which will start 15 minutes after boot and again every week while the system is running.
/etc/systemd/system/foo.timer
[Unit] Description=Run foo weekly and on boot [Timer] OnBootSec=15min OnUnitActiveSec=1w [Install] WantedBy=timers.target
Realtime timer
A timer which starts once a week (at 12:00am on Monday). When activated, it triggers the service immediately if it missed the last start time (option Persistent=true
), for example due to the system being powered off:
/etc/systemd/system/foo.timer
[Unit] Description=Run foo weekly [Timer] OnCalendar=weekly Persistent=true [Install] WantedBy=timers.target
When more specific dates and times are required, OnCalendar
events uses the following format:
DayOfWeek Year-Month-Day Hour:Minute:Second
An asterisk may be used to specify any value and commas may be used to list possible values. Two values separated by ..
indicate a contiguous range.
In the below example the service is run the first four days of each month at 12:00 PM, but only if that day is a Monday or a Tuesday.
OnCalendar=Mon,Tue *-*-01..04 12:00:00
To run a service on the first Saturday of every month, use:
OnCalendar=Sat *-*-1..7 18:00:00
When using the DayOfWeek
part, at least one weekday has to be specified. If you want something to run every day at 4am, use:
OnCalendar=*-*-* 4:00:00
To run a service at different times, OnCalendar
may be specified more than once. In the example below, the service runs at 22:30 on weekdays and at 20:00 on weekends.
OnCalendar=Mon..Fri 22:30 OnCalendar=Sat,Sun 20:00
More information is available in systemd.time(7).
-
OnCalendar
time specifications can be tested in order to verify their validity and to calculate the next time the condition would elapse when used on a timer unit file with thecalendar
option of the systemd-analyze utility. For example, one can usesystemd-analyze calendar weekly
orsystemd-analyze calendar "Mon,Tue *-*-01..04 12:00:00"
. - The
faketime
command is especially useful to test various scenarios with the above command; it comes with the libfaketime package. - Special event expressions like
daily
andweekly
refer to specific start times and thus any timers sharing such calendar events will start simultaneously. Timers sharing start events can cause poor system performance if the timers' services compete for system resources. TheRandomizedDelaySec
option in the[Timer]
section avoids this problem by randomly staggering the start time of each timer. See systemd.timer(5). - Add the option
AccuracySec=1us
to the[Timer]
section, to avoid the inaccuracy of the 1m default value ofAccuracySec
. Also see systemd.timer(5).
Transient timer units
One can use systemd-run
to create transient .timer units. That is, one can set a command to run at a specified time without having a service file. For example the following command touches a file after 30 seconds:
# systemd-run --on-active=30 /bin/touch /tmp/foo
One can also specify a pre-existing service file that does not have a timer file. For example, the following starts the systemd unit named someunit.service
after 12.5 hours have elapsed:
# systemd-run --on-active="12h 30m" --unit someunit.service
See systemd-run(1) for more information and examples.
As a cron replacement
Although cron is arguably the most well-known job scheduler, systemd timers can be an alternative.
Benefits
The main benefits of using timers come from each job having its own systemd service. Some of these benefits are:
- Jobs can be easily started independently of their timers. This simplifies debugging.
- Each job can be configured to run in a specific environment (see systemd.exec(5)).
- Jobs can be attached to cgroups.
- Jobs can be set up to depend on other systemd units.
- Jobs are logged in the systemd journal for easy debugging.
Caveats
Some things that are easy to do with cron are difficult to do with timer units alone:
- Creation: to set up a timed job with systemd you need to create two files and run
systemctl
commands, compared to adding a single line to a crontab. - Emails: there is no built-in equivalent to cron's
MAILTO
for sending emails on job failure. See the next section for an example of setting up a similar functionality usingOnFailure=
.
Also note that user timer units will only run during an active user login session by default. However, lingering can enable services to run at boot even when the user has no active login session.
MAILTO
You can set up systemd to send an e-mail when a unit fails. Cron sends mail to MAILTO
if the job outputs to stdout or stderr, but many jobs are setup to only output on error. First you need two files: an executable for sending the mail and a .service for starting the executable. For this example, the executable is just a shell script using sendmail
, which is in packages that provide smtp-forwarder
.
/usr/local/bin/systemd-email
#!/bin/sh /usr/bin/sendmail -t <<ERRMAIL To: $1 From: systemd <root@$HOSTNAME> Subject: $2 Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=UTF-8 $(systemctl status --full "$2") ERRMAIL
Whatever executable you use, it should probably take at least two arguments as this shell script does: the address to send to and the unit file to get the status of. The .service we create will pass these arguments:
/etc/systemd/system/status_email_user@.service
[Unit] Description=status email for %i to user [Service] Type=oneshot ExecStart=/usr/local/bin/systemd-email address %i User=nobody Group=systemd-journal
Where user
is the user being emailed and address
is that user's email address. Although the recipient is hard-coded, the unit file to report on is passed as an instance parameter, so this one service can send email for many other units. At this point you can start status_email_user@dbus.service
to verify that you can receive the emails.
Then simply edit the service you want emails for and add OnFailure=status_email_user@%n.service
to the [Unit]
section. %n
passes the unit's name to the template.
- If you set up sSMTP security according to sSMTP#Security the user
nobody
will not have access to/etc/ssmtp/ssmtp.conf
, and thesystemctl start status_email_user@dbus.service
command will fail. One solution is to useroot
as the User in thestatus_email_user@.service
unit. - If you try to use
mail -s somelogs address
in your email script,mail
will fork and systemd will kill the mail process when it sees your script exit. Make the mail non-forking by doingmail -Ssendwait -s somelogs address
.
Using a crontab
Several of the caveats can be worked around by installing a package that parses a traditional crontab to configure the timers. systemd-cron-nextAUR and systemd-cronAUR are two such packages. These can provide the missing MAILTO
feature.
Also, like with crontabs, a unified view of all scheduled jobs can be obtained with systemctl
. See #Management.
See also
- systemd.timer(5)
- Fedora:Features/SystemdCalendarTimers
- Gentoo:Systemd#Timer services
- systemd-cron-next — tool to generate timers/services from crontab and anacrontab files
- systemd-cron — provides systemd units to run cron scripts; using systemd-crontab-generator to convert crontabs